Structural characterization of lipid biomarkers from *Staphylococcus aureus* following microextraction for mass spectrometric phenotyping

Lisa M. Leung1,2, Benjamin L. Oyler1, Robert K. Ernst2, and David R. Goodlett1

1 University of Maryland School of Pharmacy, Baltimore MD; 2 University of Maryland School of Dentistry, Baltimore MD

Abstract

Bacteria contain essential complex lipoglycans within their membranes. These are easily extractable for analysis by mass spectrometry (MS), and glycolipid mass spectra are distinguishable between different bacteria. Therefore, we propose this class of lipids as a novel biomarker to permit identification of bacteria by MS phenotyping. Here we elucidate the structure of glycolipids isolated from Gram-positive *Staphylococcus aureus* during rapid microextraction on our diagnostic platform. Tandem MS generates dry pellets which were easily extractable for analysis by mass spectrometry (MS), and glycolipid mass spectra are separated from one another by 14 mass units which suggest differences of a single methylene group and likely results from variations in the fatty acid chain lengths of the diacylglycerol.

Introduction

Bacterial membranes are composed of lipids of diverse structure and fluid composition. Similar to eukaryotic cell membranes, microbial membrane structure is a bilayer of amphiphilic glycerophospholipids. In Gram-negative bacteria, there are two distinct membranes separated by a periplasm and in Gram-positive bacteria, the membrane is enclosed by a thick peptidoglycan cell wall. Extensive preliminary data and published literature indicates that lipid A (LA) derived from lipopolysaccharide (LPS) of Gram-negative bacteria, which comprises the majority of the outer membrane, is unique and could be used as a molecular signature for pathogen identification. (U.S. Patent 6,558,021 and US20120197535 AL) However, little research has been conducted to determine the diagnostic potential for glycolipids in Gram-positive bacteria. They have numerous unique cell wall glycans including glycolipid A (GLA) which is composed of a diacylglycerol lipid that anchors in the membrane and a complex oligosaccharide that penetrates the cell wall. These provide species-specific variability in the arrangement of fatty acid side chains and in response to changing growth conditions. We hypothesize that these signature glycolipids represent a novel biomarker that would enable identification of a pathogen.

Methods

We optimized a micro-scale hot ammonium isobutyrate lipid isolation protocol described by El Hamdi et al. (2005) that utilizes mild acid hydrolysis to disrupt the membrane and liberate the lipid molecules from their complex carbohydrate components. Overnight growth cultures (1-5 mL) of methicillin-resistant *S. aureus* (MRSA) M2 strain were harvested and reacted in a 5:3 isobutyric acid/ammonium butyrate solvent mixture. Extracts were diluted 10:1 and samples were analyzed by ESI-TOF in negative ion mode using a Waters Synapt G2 HDMS. Samples were injected at a rate of 5 μL/min, and MS/MS fragmentation was performed by pulsing to 60 eV.

Results: Tandem MS on most abundant mass peaks from *S. aureus* LA extracted by hot ammonium isobutyrate

Figure 2. Predicted structure for truncated LTA molecule from *Staphylococcus aureus* following ammonium butyrate whole cell extraction of lipids.

Figure 3. Tandem mass spectrometry was performed on mass spectral peaks at m/z 1352 and 1366. Data analysis was conducted manually by using the mass structure that agreed with the mass of fragments ion.

Conclusions

- Mass peaks at m/z 241, 269, and 283 as well as minor mass peaks at m/z 227, 255, 297, and 311 are attributed to 14:0, 15:0, 17:0, 18:0, and 19:0 chain fatty acids with branched chains at C-9 and C-14 positions.
- Mass peaks were also observed at m/z 1110 (representing a loss of one C14:0), m/z 805 (representing loss of two glycerophosphate units), and m/z 649 (representing loss of one C14:0 and all of the glycerophosphate repeating units from the disaccharide sugar).
- A mass peak distribution was noted at these positions with mass peaks separated by 14 mass units suggesting a difference of a single methylene group.
- Fatty acid (FA) composition accounts for the multiple LTA molecules present in the M2 profile reflecting the overall diversity of the molecule.

Future directions

- Gas chromatography with flame ionization detector (GC-FID) will be used to confirm the heterogeneity of lipid isomers within each peak.
- Additional Gram-positive organisms, particularly with different LTA types, will be included for structural studies.

References

Acknowledgements

Goodlett and Ernst laboratories, University of Maryland Department of Microbiology & Immunology, School of Medicine, Department of Microbial Pathogenesis, School of Dentistry, Department of Pharmaceutical Sciences, School of Pharmacy

This work was supported by the University of Maryland Baltimore School of Pharmacy Mass Spectrometry Center (SOP1384-1082014) and The National Institutes of Health (1RO1GM111666-01)

Funding

TP5517 Top-down Structural Characterization of Gram-negative Bacterial Lipopolysaccharide Fractions (Dr. Steinberg)

TP5859 Surface-Acidic Mass Spectral Bioprospecting - Vacuum-Assisted Mass Spectrometry (Dr. Hayashi)

TP5860 Surface-Acidic Mass Spectral Bioprospecting - Mass Spectrometry - A Tool to Assess Lipid Function (Dr. Hayashi)

TP5862 Mass Spectrometric Characterization of Surface-Acidic Mass Spectral Bioprospecting for Lipid & Lipid-Sugars (Dr. Steinberg)

TP5863 Phospholipid Analysis of Dietary Lipids (Dr. Steinberg)

TP5864 Phospholipid Analysis of Dietary Lipids (Dr. Steinberg)

TP5865 Phospholipid Analysis of Dietary Lipids (Dr. Steinberg)

TP5866 Phospholipid Analysis of Dietary Lipids (Dr. Steinberg)